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Optically active lactones are important molecules in chemistry,
biology, and mediciné.Since these motifs are widely found in
compounds of biological interest, a variety of methods including

mainly diastereoselective reactions have been developed for the

synthesis of optically activé-lactones. and these often include

multistep reactions and have been performed using more or less
complicated strategies. The enantioselective synthesis of such

compounds have also been achie¥édwever, according to our
knowledge, no catalytic enantioselective synthetic procedure for
the formation of optically active functionalizelactones from
simple reagents is available.

This report presents a catalytic enantioselective reaction of
o-dicarbonyl compound4 with ketene diethylaceté? leading
to d-lactone derivative8 in good yield and high enantiomeric
excess (ee) (eq 2f Hydrolysis of3 produces the functionalized
optically actived-lactones4 (eq 1). During the course of the
reaction, a chiral quaternary carbon center is formed, which is a
quite demanding task in organic synthésis.

Reaction of ethyl benzoylformatiea with ketene diethylacetal
2 in the presence of chiral Lewis acids afforded a sequential-
aldol type of addition of to the keto group ofla giving 3a as
the major product and a small amount of the mono-addition
product 6a. Different chiral Lewis acid complexes have been
screened for this reaction, and the most promising results were
found for the chiral bisoxazolinecopper(ll) complexes (S)-
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reaction are presented in Table 1.

Table 1. Results from the Screening of the Reaction of Ethyl
Benzoylformatela with Ketene Diethylaceta®
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EtO._ OEt
Ph OEt \[r
o Cat
1a 2
OEt OEt
OEt
HO, COOEt
OEt ppy - COOEt
6a
loading yield ee
entry catalyst mol % solvent 3al6af% 3al6a® %
1 (9-5aX =O0Tf 20 CHCl, <20 n.d.
2 (9-5aX = OTf 20 THF 61/30 77/85
3 (9-5aX = OTf 20 EtO 80/10 90/85
4 (9-5aX =OTf 15  EtO 80/14  90/99
5 (9-5aX = OTf 10 EtO 70/20 87/96
6 (9-5aX = Sbhk 20 CHCl, <20 n.d.
7 (R)-5b X = OTf 20 EtO 79/6 12/-

a|solated yield? ee measured by HPLC using an OD column.

The results in Table 1 shows thaa is formed in up to 80%
isolated yield and 90% ee by the application teft-butyl-
bisoxazoline catalyst§-5a-Cu(OTf), (15 mol %) in EtO as the
solvent, together with 14% of the mono-addition prodéetvith
99% ee (entry 4). The reaction is solvent- and counterion-
dependent as in, for example, g, as the solvent and Sk&s
the counterion, very low yield ddais formed (entries 1 and 6).
The use of the phenyl-bisoxazoline cataly@tbb-Cu(OTf), gives
3ain good yield, however, with low ee (entry 7).

The reaction was found to be quite general, and Table 2 shows
the results of different-dicarbonyl compound4a—i reacting
with 2 in the presence ofgj-5a-Cu(OTf), as the catalyst.

It appears from the results in Table 2 that thalicarbonyl
compounds derivativeka—f, which have an ester functionality,
all react with2 giving theo-lactone derivative8a—d,f in good

(8) For the use ofC,-symmetric BOX complexes to Mukaiyama-aldol
reactions, see e.g.: Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey,
C. S.; Campos, K. R.; Connell, B. T.; Staples, RJ.JAm. Chem. S0d.999
121, 669 and references therein; Evans, D. A.; Burgey, C. S.; Kozlowski, M.
C.; Tregay, S. WJ. Am. Chem. S0d.999 121, 686 and references therein.
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Table 2. Reaction of thex-dicarbonyl Compound&a—i with OEt OEt
Ketene Diethylaceta® Catalyzed by $)-5a-Cu(OTf), with the EtO oEt  HCOH
Formation of thed-Lactone Derivative8a—i o) @
9 E10.__OFEt & AT i
o )Hrﬂz . \[r EtO ! OFEt o
o (S)ySa- N R 3b-e 4
Cu(OT), R b: yield 63%
(20 mol%) o ¢: yield 72%
1 2 3 d: yield 67%
a:R'=Ph, R? = OFt a:R'=Ph, R?= OEt e yield 50%
b: R' = Me, R? = OMe b:R' = Me, R? = OMe
¢ R'=Et, R?=OMe ¢:R' =Et, R?= OMe ) . ) .
d:R' = iPr, R? = OEt d:R' = iPr, R? = OEt of the carbonyl functionality. This leads #from which 6a, the
e:R' = BrCH,, R? = OEt e: R' = BrCH,, R? = OEt byproduct of the reaction, is formed. It is suggested thatlds
f: R" = trans-PhCH=CH, R? = OMe f. R' = trans-PhCH=CH, R? = OMe in the second reaction as outlined in Scheme 1, gidrfgom
g: R' = Me, R° = Me g: R’ = Me, R = Me which thed-lactone acetal8 are formed. We cannot distinguish
h:R'=Me, R"=Et h: R = Me, R® = Et if the last part of the reaction is an off- or on-metal process.
I:R'=Me, R2=Ph I:R' = Me, R2=Ph
o-dicarbonyl reac. temp.
entry compouné/ °C P yield? % ee % Scheme 1
1 la —78 3a— 80 93 o E o
2 1b —78 3b—-74 83
3 1c ~15 3c—70 77 N ) Qe QFt
4 1d ~15 3d— 58 80 ci % EtO)_OEt
5 le -15 3e— 55 53 BN B LT
6 1f -78 3f— 80 8 o, /P
7 1g -15 3g—-71 95! 2X
8 1h -15 3h—70 90! Ph ~\OFt
9 1i -15 3i— 58 90 5 3a

1a-
2|solated yield? ee determined by HPLC using an OD or AD (8)-5a-Cu(ll
column.¢ ee determined after hydrolysis 8fby HPLC using an OD
or AD column.?ee determined by GEMS using a Chromopack l ]
Chiralsil-Dex CB column.

to high isolated yields and high enantioselectivity as-93% 0 0 |\O) 0 | |\)
ee’'s are obtained (entries-4, 6), while3eis formed in moderate S/N\ N/ §/N\ N~/
yield and 53% ee (entry 5). The byproducts in these reactions gy /C”\ ‘tBu  EtO.) Ot wed PY Cieu
are the corresponding mono-addition products which are isolated ed o \ﬂ/ . ed o

in ~10% yield. It is notable that the reactions proceed with both phA\_/< ph%_/<
good yields and high ee’s with such different-®ibstituents as .  OEt { Ot
phenyl, methyl, ethyli-propyl, bromo-methyl, andg)-styryl. The @/r—OFEt EtO——OEt
catalytic enantioselective reaction for the formatiorddactone E0)

derivatives can be extended to symmetrical and unsymmetrical — Et
a-diketones without loss of selectivity. 2,3-Butanedidggeacts EO

with 2 to give 3gin 71% yield and 95% ee (entry 7). Th&){ 7 2 8

5a-Cu(OTf), catalyst can distinguish between a methyl ketone
and ethyl ketone as shown by the reaction of the unsymmetrical

2,3-pentanediongh which reacts witl2 by addition to the methyl o COOE

ketone exclusively, givingh in 70% yield and 90% ee (entry }Q/COOEt
8). The high regioselectivity of the reaction is further demonstrated Ph
by the reaction of am-diketone substituted with a methyl and 6a

phenyl substituent. For this substrai® the methyl ketone reacts
exclusively, and 58% 08i is isolated having 90% ee (entry 9).
The optically actived-lactone acetals3@—i) obtained from ) ) ) )
reaction of thex-dicarbonyl compounds with can be hydrolyzed ~ In summary, the catalytic enantioselective synthesis of func-
to highly functionalized3-lactones. Different acidic conditions ~ tionalized optically activé-lactones by a new reaction afketo
have been tried for the hydrolysis of the ketal groups, and the €sters and symmetrical and unsymmetricatiiketones with
results obtained fotb—e using HCQH in a mixture of pentane k_etene diethylacetal is described. Th_e reaction proceeds in good
and CHCI, are presented in eq 2. Tldelactones4 obtained by yle_ld and up to 95% ee for the fu_nctlonallz_édac_tone ac_etals
hydrolysis contain attractive functional groups/building blocks Which are hydrolyzed by HCf to highly functionalized optically
which can be used for further organic transformations. active d-lactones.
The formation of the functionalizedtlactone acetald proceeds
as a sequential-aldol reaction as outlined in Scheme 1 for ethyl  Acknowledgment. We are indebted to The Danish National Research
benzoylformatela. The determination of the absolute configu- Foundation for financial support.
ration of 3ais based on the known absolute configuratior6af
(Scheme 1Y.0n this basis, it is proposed thaa coordinates to
(9-5a-Cu(ll) in a bidentate fashion leading to a square-planar
complex? to which the ketene diethylacetaladds to thesi-face
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